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To accurately simulate the continuous property change of functionally graded piezoelectric materials (FGPMs) and overcome the
overstiffness of the finite element method (FEM), we present an electromechanical inhomogeneous cell-based smoothed FEM
(ISFEM) of FGPMs. Firstly, ISFEM formulations were derived to calculate the transient response of FGPMs, and then, a modified
Wilson-θmethod was deduced to solve the integration of the FGPM system.*e true parameters at the Gaussian integration point
in FGPMs were adopted directly to replace the homogenization parameters in an element. ISFEM provides a close-to-exact
stiffness of the continuous system, which could automatically and more easily generate for complicated domains and thus
significantly decrease numerical errors.*e accuracy and trustworthiness of ISFEMwere verified as higher than the standard FEM
by several numerical examples.

1. Introduction

Because of their outstanding electromechanical properties,
easy fabricability, and preparation flexibility, piezoelectric
materials are extensively applied as sensors and actuators to
monitor and modulate the response of structures [1, 2].
Piezoelectric actuators and sensors are innovative for mi-
croscopic electromechanical systems and intelligent material
systems, particularly in aerospace and medical fields [3].
Conventional piezoelectric sensors and actuators comprise
multiple layers of various piezoelectric materials [4–7].
Moreover, piezoelectric layers with uniform material
properties are limited by large bending displacement, stress
concentration, creeping at high temperature, and failure
from interfacial unbounding. All these phenomena are in-
duced by mechanical or electric loading at layer interfaces
[8].

To overcome the above limitations, Zhu et al. introduced
and fabricated functionally graded piezoelectric material
(FGPM) sensors and actuators [9, 10]. FGPMs change

nonstop in one or more directions without generating in-
ternal stress concentration despite the production of large
displacements. Takagi et al. fabricated FGPM bimorph ac-
tuators by using a mixed system of lead-zirconate-titanate
(PZT) and Pt [11]. Nowadays, FGPMs are widely used in-
telligent materials for sensors and actuators in micro-
structural engineering. Many efforts have been made to
analyze the behaviors and static/dynamic responses of
FGPMs (e.g., shells, beams, and plates), such as the wave
propagation study of FGPM plates based on the laminate
theory [12]. Moreover, exact 3D analysis of FGPM rectan-
gular plates was conducted by using a state-space approach
[13] and to investigate the natural frequencies and mode
shapes after being poled perpendicular to the middle plane
[14]. *e above method was also applied to explore the free
vibration of rectangular FGPM plates [15]. *e semi-
analytical finite element method (FEM) was used to in-
vestigate the static response of anisotropic and linear
functionally graded magneto-electro-elastic plates [16].
Lezgy-Nazargah et al. [17] carried out static and dynamic
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analyses on piezoelectric beams by using a refined sinus
model. *e results have been found in good agreement with
the reference solutions for various electrical and mechanical
constrained conditions. Meanwhile, the 3D exact state-space
solution [18] and Peano series solution [19] were developed
for the cylindrical bending vibration of the FGPM laminates,
respectively. Layerwise FEM was adopted to investigate the
displacement and stress responses of an FGPM bimorph
actuator [20]. Qiu et al. inhibited the vibration of a smart
flexible clamped plate by using piezoelectric ceramic patch
sensors and actuators [21]. *e Timoshenko beam theory
was used to analyze the static and dynamic responses of
FGPM actuators to thermo-electro-mechanical loading [22].
*e first-order shear deformation theory was used to study
the static bending, free vibration, and dynamic responses of
FGPM plates under electromechanical loading [23]. *e free
and induced vibrations of FGPM beams under thermo-
electro-mechanical loading were characterized using the 3-
order shear deformation beam theory [24]. A high-order
theory for FGPM shells was proposed based on the gen-
eralized Hamilton’s principle [8]. Although the FEM (h-
version) is adequate for low-frequency vibration analysis, it
is not well suited to the vibration analysis of medium- or
high-frequency regimes [25]. *e spectral finite element
method (SFEM) [26, 27] and the weak form quadrature
method (QEM) [28, 29] are developed for the dynamic
analysis of FGPM beams and structures.

*ough FEM is the most widely used and effective
numerical approach in practical issues in research and
engineering (including mechanics of vibration), it is not
necessarily fully perfect or cannot be further improved. For
example, the probable overestimation of stiffness in solid
structures may lead to locking behavior and inaccurate
stress-solving [30]. By adding strain smoothing into FEM
[31], Liu et al. established a series of cell-based [32–36],
node-based [37, 38], edge-based [39–41], or face-based
[42, 43] smoothed FEMs (S-FEMs) and their combinations
[44–47]. *ese S-FEMs with different properties can be used
to get desired solutions for a variety of benchmarks and
practical mechanic issues [48–50]. *e strain-smoothing
operations can reduce or alleviate the overstiffness of
standard FEM, significantly improving the accuracy of both
primal and dual quantities [51]. Moreover, owing to absence
of parametric mapping, the shape function derivatives and
S-FEMmodels established in elasticity are not required to be
insensitive to mesh distortion [52]. S-FEMs have been
successfully extended to analyze the dynamic control of
piezoelectric sensors and actuators, topological optimization
of linear piezoelectric micromotors, statics, frequency, or
defects of smart materials [53–63]. Zheng et al. [64] utilized
the cell-based smoothed finite element method with the
asymptotic homogenization method to analyze the dynamic
issues on micromechanics of piezoelectric composite ma-
terials. Zhou et al. [65, 66] deduced the linear and nonlinear
cell-based smoothed finite element method of functionally
graded magneto-electro-elastic (MEE) structures and fur-
ther examined the transient responses of MEE sensors or
energy harvest structures considering the damping factors.
However, there is little literature reported concerning the

dynamic response of FGPMs using the electromechanical
inhomogeneous cell-based smoothed finite element method.
Because of versatility, S-FEMs become convenient and ef-
ficient numerical approaches to address different physical
issues.

Given the continuous change of the gradient of material
properties along the thickness x3 direction and with cell-
based gradient smoothing, we deduced the basic formula of
ISFEM and amodifiedWilson-θmethod to solve the integral
solution of the FGPM system. *e displacements and po-
tentials of FGPM cantilever beams under sine wave load,
cosine wave load, step wave load, and triangular wave load
were analyzed in comparison with FEM.

2. Basic Equations for Piezoelectric Materials

2.1. Geometry and Coordinate System. Each beam has a
rectangular uniform cross section and is made of Ni layers
either completely or partially composed of FGPM beams.
*e Cartesian coordinate system (x1, x2, x3) and geometric
parameters are illustrated in Figure 1.

2.2. Constitutive Equations. At the k-th layer, 3D linear
constitutive equations are polarized along its global co-
ordinates as follows:
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(2)

where σij and εkl are the stress tensor and infinitesimal strain
tensor, respectively, Ei and Di are electric field and electric
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displacement vector components, respectively; eik, ckl, and
Xij are the piezoelectric, elastic, and dielectric material
constants, respectively. Different from homogeneous pie-
zoelectric materials, the three constants are dependent on
coordinate x3. We assume that the material properties along
the thickness direction are arbitrarily distributed as follows:

cijkl x3( 􏼁 � c
0
ijklf x3( 􏼁,

eikl x3( 􏼁 � e
0
iklf x3( 􏼁,

χik x3( 􏼁 � χ0ikf x3( 􏼁, i, j, k, l �� 1, 2, 3,

(3)

where f(x3) is an arbitrary function and c0kl, e0kl, and χ0kl are
values at the plane x3 � 0.

In an FGPM beam, equations (1) and (2) are reduced to

σ � Cε− eE,

D � eTε + χE,
(4)
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2.3. Weak Formulation. *e principle of virtual work for a
piezoelectric medium of volume Ω and regular boundary
surface Γ can be written as

δΠ � δU− δW � −􏽚
Ω
δεTσ dΩ + 􏽚

Γ
δuTFs dΓ

+ 􏽚
Ω
δuTFv dΩ−􏽚

Ω
ρδuT €u dΩ + 􏽚

Ω
δETD dΩ

+ 􏽚
Γ
QδφdΓ −􏽚

Ω
qδφ dΩ � 0,

(6)

where Fs, Fv, u, and φ are the vectors of surface force,
mechanical body force, node displacements, and node
electrical potentials, respectively; q, Q, and ρ are the
electrical body charge, surface charge, and mass density,
respectively; and δ is the virtual quantity.

3. Electromechanical ISFEM

*e solving domain Ω is discretized into np elements, which
contain Nn nodes; the approximation displacement u and
the approximation electrical potential φ for the FGPM
problem can be expressed as

u � 􏽘

np

i�1
N

u
i ui � Nuu,

φ � 􏽘

np

i�1
N

φ
i φi � Nφφ,

(7)

where Nu and Nφ are the ISFEM displacement shape
function and electrical potential shape function, respectively.

Four-node element is divided into four smoothing
subdomains. Field nodes, edge smoothing nodes, center
smoothing nodes and edge Gaussian points, the outer
normal vector distribution, and the shape function values
are shown in Figure 2.

At any point xk in the smoothing subdomains Ωk
i , the

smoothed strain ε(xk) and the smoothed electric field E(xk)

are
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z1
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…
…
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x1SV(t)
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h

b

Figure 1: FGPM beams: Cartesian coordinate system and geometric parameters: length (L), width (b), and height (h).
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where ε(x) and E(x) are the strain and electric field in FEM,
respectively, and Φ(x − xk) is the constant function:

Φ x − xk
􏼐 􏼑 �

1
Ak

i

, x ∈ Ωk
i ,

0, x ∉ Ωk
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dΩ. (11)

Substituting equation (10) into equations (8) and (9),
then we have

ε xk
􏼐 􏼑 �

1
Ak

i

􏽚
Γk

i

nk
uu dΓ, (12)

E xk
􏼐 􏼑 �

1
Ak

i

􏽚
Γk

i

nk
φφdΓ, (13)

where Γki is the boundary of Ω
k
i and nk

u and nk
φ are the outer
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Equations (12) and (13) can be rewritten as
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where ne is the number of smoothing elements.
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At the Gaussian point xGb , equations (16) and (17) are
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where xGb and lkb are the Gaussian point and the length of the
smoothing boundary, respectively, and nb is the total number
of boundaries for each smoothing subdomain. As the shape
function is linearly changed along each side of the smoothing
subdomain, one Gauss point is sufficient for accurate boundary
integration [30].

*e essential distinction between ISFEM and FEM is that
FEM needs to construct the shape function matrix of the
element, while ISFEM only needs to use the shape function
at the Gaussian point of the smoothing element boundary
and does not require to involve the shape function de-
rivatives. *e above can reduce the continuity requirement
of the shape function, and therefore, the accuracy and
convergence of the method are improved.
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Figure 2: Smoothing subcells and the values of shape functions (reproduced from Zheng et al. [64] under the Creative Commons
Attribution License/public domain).
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Table 1: Material constants.

Material c11
(GPa)

c12
(GPa)

c13
(GPa)

c33
(GPa)

c44
(GPa)

ρ
(kg/m3)

e31
(C/m2)

e33
(C/m2)

e15
(C/m2) χ11/χ0 χ33/χ0 χ0 (C/N·m2)

PZT-4 139.0 77.80 74.30 115.0 25.60 7600 −5.20 15.10 12.70 1476.0 1301.0 8.854×10−12

PZT-5H 126.0 79.60 84.10 114.0 23.30 7500 −6.50 17.44 23.30 1468.9 1698.3 8.854×10−12
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Figure 4: Sine wave load.
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Figure 5: Variations of the displacement u3 and electrical potential φ at the loading point with time when the gradient parameter was n�−5.
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Figure 3: Geometry of the cantilever beam.
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Figure 6: Continued.
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*e dynamic model of the FGPM electromechanical
system can be derived from the Hamilton principle in the
following form:

M€q + Kq � F, (19)

where

M �
Muu 0

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

q·· �
u··

€φ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

K �

Kuu Kuφ

KT
uφ Kφφ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

q �

u

φ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

F �

F

Q

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

Muu � 􏽘
e

Me
uu,

Me
uu � diag m1, m1, m2, m2, m3, m3, m4, m4􏼈 􏼉,

(20)

where mi � piT, Ak
i (i� 1, 2, 3, 4) is the mass of the i-th

smoothing element corresponding to node i, T is the
smoothing element thickness, and pi is the density of
Gaussian integration point of the i-th smoothing subdomain:

Kuu � 􏽘

nc

i�1
BiT
u CB

i

uA
k
i ,

Kuφ � 􏽘

nc

i�1
BiT
u eB

i

φA
k
i ,

Kφφ � −􏽘

nc

i�1
BiT
φ χB

i

φA
k
i ,

F � 􏽚
Ω
NT

uFv dΩ−􏽚
Γq
NT

uFs dΓ,

Q � 􏽚
Ω
NT

φQ dΩ + 􏽚
Γq
NT

φq dΓ,

(21)

where nc � np × ne.
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Figure 6: Variations of the displacement u3 and electrical potential φ at the loading point with time when the gradient parameter was
n �−1, 0, 1, and 5. (a) Displacement (n �−1). (b) Electrical potential (n �−1). (c) Displacement (n � 0). (d) Electrical potential (n � 0).
(e) Displacement (n � 1). (f ) Electrical potential (n � 1). (g) Displacement (n � 5). (h) Electrical potential (n � 5).
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Figure 7: Convergence rate of ISFEM.
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Table 2: Displacement u3 and electrical potential φ at the loading point with the gradient parameter n�−5, −1, 0, 1, and 5 of the FGPMbeam
based on PZT-4.

Time (s) Field variables
n�−5 n�−1 n� 0 n� 1 n� 5

ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM

0.0001 u3 ×10−10m 12.852 12.658 2.760 2.751 1.707 1.702 1.006 1.004 0.0756 0.0754
φ× 10−2 V 11.848 11.912 0.442 0.427 0.212 0.207 0.0961 0.0944 0.00112 0.00110

0.0004 u3 ×10−9m 28.517 28.367 4.735 4.715 2.855 2.842 1.738 1.731 0.187 0.187
φ× 10−1 V 5.851 5.747 0.597 0.582 0.349 0.339 0.193 0.188 0.0805 0.782

0.0025 u3 ×10−8m 13.345 13.191 1.538 1.528 0.917 0.913 0.564 0.561 0.0882 0.0873
φ (V) 2.447 2.391 0.198 0.191 0.112 0.109 0.0621 0.0605 0.00386 0.00372

0.004 U3 ×10−9m 77.799 77.682 10.154 10.146 6.165 6.123 3.727 3.725 0.514 0.516
φ (V) 1.434 1.406 0.129 0.125 0.0756 0.0740 0.0414 0.0401 0.00224 0.00221

Figure 9: Mesh of the FGPM beam.

Table 3: Displacement u3 and electrical potential φ at the loading point with the gradient parameter n�−5, −1, 0, 1, and 5 of the FGPMbeam
based on PZT-5H.

Time (s) Field variables
n�−5 n�−1 n� 0 n� 1 n� 5

ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM

0.0001 u3 ×10−10m 13.691 13.424 2.951 2.942 1.826 1.821 1.076 1.074 0.0802 0.0800
φ× 10−2 V 12.098 12.493 0.413 0.403 0.190 0.194 0.0825 0.0843 0.000624 0.000649

0.0004 u3 ×10−9m 31.394 31.196 5.583 5.561 3.381 3.367 2.050 2.042 0.207 0.206
φ× 10−1 V 5.901 6.057 0.599 0.607 0.349 0.350 0.192 0.190 0.0736 0.0735

0.0025 u3 ×10−8m 16.122 16.006 2.017 2.003 1.118 1.117 0.741 0.736 0.107 0.106
φ (V) 2.522 2.584 0.219 0.219 0.122 0.123 0.0691 0.0689 0.00392 0.00393

0.004 u3 ×10−9m 76.019 75.052 10.339 10.264 6.264 6.261 3.795 3.768 0.501 0.496
φ (V) 1.402 1.437 0.113 0.113 0.0649 0.0653 0.0351 0.0350 0.00179 0.00178

100 1000

1E – 3

0.01

0.1

Er
r
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Figure 8: Comparison of computational efficiency.
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*e application of the inhomogeneous smoothing ele-
ment is to calculate stiffness matrix of the element. *e
parameters of four smoothing subdomains Ak

i (i� 1, 2, 3, 4)
are various in the elements, so the actual parameters at the
Gaussian integration point are taken directly in order to
reflect the changes of material property in each element.

4. Modified Wilson-θ Method

*e modified Wilson-θ method is an important scheme
and an implicit integral way to solve the dynamic
system equations [63]. If θ> 1.37, the solution is

unconditionally stable. *e detailed procedures are
showed as follows:

4.1. Initial Calculation

(1) Formulate generalized stiffness matrix K, mass
matrix M, and damping matrix C

(2) Calculate initial values of q, _q, €q
(3) Select the time step Δt and the integral constant θ

(θ�1.4)

Table 4: Displacement u3 and electrical potential φ at the loading point with the gradient parameter n �−5, −1, 0, 1, and 5 of the FGPM
beam based on PZT-4 under cosine load.

Time (s) Field variables
n�−5 n�−1 n� 0 n� 1 n� 5

ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM

0.0001 u3 ×10−9m 20.427 20.159 4.387 4.382 2.713 2.710 1.600 1.599 0.120 0.120
φ× 10−2 V 188.326 189.821 7.029 6.896 3.369 3.269 1.528 1.5044 0.0178 0.0175

0.0004 u3 ×10−8m 21.208 21.234 2.738 2.743 1.610 1.611 1.006 1.004 0.141 0.142
φ× 10−1 V 27.889 27.949 3.315 3.216 0.193 0.187 1.113 1.098 0.0648 0.0639

0.0025 u3 ×10−9m −33.487 −32.845 −12.058 −11.952 −4.445 −4.345 −4.436 −4.392 −0.225 −0.221
φ (V) −0.138 −0.137 −0.132 −0.128 −0.0491 −0.0479 −0.0486 −0.0470 −0.00086 −0.00085

0.004 u3 ×10−9m −11.111 −11.501 −0.984 −0.969 −5.549 −5.616 −0.351 −0.339 −0.0981 −0.0913
φ (V) −1.408 −1.365 −0.0176 −0.0174 −0.0653 −0.0635 0.00234 0.00229 0.000596 0.000579

Table 5: Displacement u3 and electrical potential φ at the loading point with the gradient parameter n�−5, −1, 0, 1, and 5 of the FGPMbeam
based on PZT-5H under cosine load.

Time (s) Field variables
n�−5 n�−1 n� 0 n� 1 n� 5

ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM ISFEM FEM

0.0001 u3 ×10−9m 2.902 2.901 4.691 4.685 2.902 2.901 1.710 1.710 0.128 0.127
φ× 10−2 V 192.287 198.967 6.561 6.742 3.017 3.092 1.312 1.342 0.00992 0.0101

0.0004 u3 ×10−8m 23.941 23.948 3.486 3.493 2.069 2.064 1.281 1.284 0.160 0.159
φ× 10−1 V 28.178 29.094 3.5841 3.613 2.108 2.121 1.203 1.201 0.0621 0.0616

0.0025 u3 ×10−9m 117.958 122.357 −4.831 −4.723 −7.090 −6.942 −1.777 −1.715 0.795 0.8136
φ (V) 0.50863 0.5017 −0.0407 −0.0393 −0.0688 −0.0652 −0.0151 −0.0148 0.00338 0.00342

0.004 u3 ×10−9m −183.26 −179.45 −27.847 −27.063 −9.636 −9.387 −10.233 −9.998 −1.287 −1.263
φ (V) −2.273 −2.176 −0.284 −0.277 −0.0931 −0.0885 −0.0951 −0.0949 −0.00466 −0.00451
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Figure 10: Cosine wave load.
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a0 �
6

(θΔt)2
,

a1 �
3

(θΔt)
,

a2 � 2a1,

a3 �
θΔt
2

,

a4 �
a0

θ
,

a5 � −
a2

θ
􏼒 􏼓,

a6 � 1−
3
θ
,

a7 �
Δt
2

,

a8 �
Δt2

6
.

(22)

(4) Formulate an effective generalized stiffness matrix 􏽥K:
􏽥K � K + a0M + a1C

4.2. For Each Time Step
(1) Calculate the payload at time t+ θΔt:

􏽥F∗t+θΔt � Ft + θ Ft+Δt −Ft( 􏼁

+ M a0qt + a2 _qt + 2€qt( 􏼁

+ C a1qt + 2 _qt + a3 €qt( 􏼁.

(23)

(2) Calculate the generalized displacement at time
t+ θΔt:

􏽥Kqt+θΔt � 􏽥F∗t+θΔt. (24)

(3) Calculate the generalized acceleration, generalized
speed, and generalized displacement at time t+Δt:

€qt+Δt � a4 qt+θΔt − qt( 􏼁 + a5 _qt + a6 €qt,

_qt+Δt � _qt + a7 €qt+Δt + €qt( 􏼁,

qt+Δt � qt + Δt _qt + a8 €qt+Δt + 2€qt( 􏼁.

(25)

5. Numerical Examples

Four numerical examples were conducted under sine wave
load, cosine wave load, step wave load and triangular wave
load, respectively. FGPM cantilever beams of the same di-
mensions (length L� 40mm, width h� 5mm and thickness
b� 1mm) were subjected to forced vibration (Figure 3). *e
material constants are shown in Table 1. And initial con-
ditions were q � 0 and _q � 0 at t� 0 moment. *e FGPM
beams were made of PZT-4 or PZT-5H on basis of expo-
nentially graded piezoelectric materials with the following
material properties:

ckl x3( 􏼁 � c
0
klf x3( 􏼁,

ekl x3( 􏼁 � e
0
klf x3( 􏼁,

χkl x3( 􏼁 � χ0klf x3( 􏼁,

(26)

where f(x3) � enx3/h and n is the gradient parameter.

5.1. SineWave Load. *e load F applied to the free end and
the load waveform is demonstrated in Figure 4. A con-
vergence investigation with respect to meshes was first
carried out. Four smoothing subcells were used for elec-
tromechanical ISFEM with ∆t� 1× 10−3 s. *e variations of
displacement u3 and electrical potential φ at the loading
point of the PZT-4-based FGPM beam combined with re-
spect to time are shown in Figure 5.*e results at n�−5 with
the element number of 480, 800, 1200, or 1680 were
compared with the reference solution [67]. *e variations of
u3 and φ at the loading point combined with respect to time
at n�−1, 0, 1, and 5 in comparison with the reference
solution are shown in Figure 6 [67]. Figure 7 illustrates the
total energy norm Err versus the mesh density at t� 0.002 s
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Figure 11: Step wave load.
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and t� 0.01 s. *e simulation results are well consistent
among different numbers of meshes, which demonstrate the
high convergence of ISFEM.

Figure 8 shows a comparison of calculation time between
ISFEM and FEM at Intel ® Xeon ® CPU E3-1220 v3 @
3.10GHz, 16GB RAM. *e bandwidth of the system ma-
trices for the FEM and ISFEM is identical. However, in the
ISFEM, only the values of shape functions (not the de-
rivatives) at the quadrature points are needed and the re-
quirement of traditional coordinate transform procedure is
not necessary to perform the numerical integration.

*erefore, the ISFEM generally needs less computational
cost than the FEM for handling the dynamic analysis
problems.

*e variations of u3 and φ at the loading point combined
with t� 0.0001 s, 0.0004 s, 0.0025 s, and 0.004 s in the PZT-4-
based FGPM cantilever beam are shown in Table 2. *e
80×10 meshes of ISFEM at n�−5, −1, 0, 1, and 5 are shown
in Figure 9, and FEM is considered 160× 20 elements.
Clearly, the results of ISFEM with 80×10 elements are the
same as the calculated results of FEM using 160× 20 ele-
ments, suggesting ISFEM has higher accuracy.
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Figure 12: Variations of displacement u3 and electrical potential φ at the loading point with time of the FGPM beam based on PZT-4 when
the gradient parameter was n�−5, 0 and 5 under step load. (a) Displacement. (b) Electrical potential.
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Figure 13: Variations of displacement u3 and electrical potential φ at the loading point with time of the FGPMbeam based on PZT-5Hwhen
the gradient parameter was n�−5, 0 and 5 under step load. (a) Displacement. (b) Electrical potential.
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*e variations of u3 and φ at the loading point combined
with time of the PZT-5H-based FGPM cantilever beam are
listed in Table 3. Clearly, when n changes from −5 to 5, the
maximum u3 and φ decrease, which is consistent with the
PZT-4-based FGPM cantilever beam. Furthermore, the
results of ISFEM with 80×10 elements are the same as the
calculated results of FEM using 160× 20 elements, sug-
gesting ISFEM has higher accuracy.

5.2. CosineWave Load. *e cosine load F applied to the free
end and load waveform is shown in Figure 10.*e variations
of u3 and φ at the loading point combined with time of PZT-
4- and PZT-5H-based FGPM cantilever beams are listed in
Tables 4 and 5, respectively. *e calculated results of ISFEM
with 80×10 elements are the same as those of FEM using

160× 20 elements, implying that ISFEM possesses higher
accuracy.

5.3. StepWave Load. *e step load F applied to the free end
and load waveform is indicated in Figure 11. *e variations
of u3 and φ at the loading point combined with time of PZT-
4- and PZT-5H-based FGPM cantilever beams are illustrated
in Figures 12 and 13, respectively. It is clearly shown that
ISFEM possesses higher accuracy than FEM for the calcu-
lated results of ISFEM using 80×10 elements are the same as
FEM using 160× 20 elements.

5.4. TriangularWave Load. *e triangular load F applied to
the free end and load waveform is shown in Figure 14. *e
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Figure 14: Triangular wave load.
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Figure 15: Variations of displacement u3 and electrical potential φ at the loading point with time of the FGPM beam based on PZT-4 when
the gradient parameter was n�−5, 0, and 5 under triangular load. (a) Displacement. (b) Electrical potential.
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variations of u3 and φ at the loading point combined with
time of PZT-4- and PZT-5H-based FGPM cantilever beams
are shown in Figures 15 and 16, respectively. It shows that
the solutions of CS-FEM with less elements are the same as
the solutions of FEM using more elements.

6. Conclusions

An electromechanical ISFEM was proposed given the
continuous changes of the gradient of material properties
along the thickness x3 direction and with cell-based gradient
smoothing. *e modified Wilson-θ method was deduced to
solve the integral solution of the FGPM system. *e dis-
placements and potentials of cantilever beams combining
with sine load, cosine load, step load, and triangular load
were analyzed by ISFEM in comparison with FEM.

(1) ISFEM is correct and effective in solving the dynamic
response of FGPM structures

(2) ISFEM can reduce the systematic stiffness of FEM
and provides calculations closer to the true values

(3) ISFEM is more efficient than FEM and takes less
computation time at the same accuracy

*is study indicates a possibility to select suitable
grading controlled by the power law index according to the
application.
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